
CS263 Fall 2005 The Art of Controlled Chaos

UCB 1 2005

GREG GIBELING
GDGIB@EECS.BERKELEY.EDU

UC BERKELEY
11/29/2005

The Art of Controlled Chaos
A Survey of Dataflow & Concurrent Programming

1.0 Introduction

There are currently a wide
variety of systems and architecture
projects attempting to design or program
in a dataflow style. The fundamental
reason for this is a desire to expose
concurrency at various levels, and
support a more natural style of
programming both for modeling and
implementation reasons.

Working with concurrency
exposes the fundamental flaw in the von
Neumann view that computers are
sequential imperative machines: no
sufficiently complex physically realistic
system can or will do exactly one thing
at a time. As such system designers
have begun to realize the immense
performance gains which could be
achieved by exposing a more parallel, or
at least a more realistic, model of a
computer to the programmer.

Unfortunately there exist today
no widely used general purpose
languages for describing dataflow and
concurrent programs. Most projects
have their own style or language:
WaveScalar [1] at Washington
recompiles Alpha binaries, FLEET [2]
by Ivan Sutherland is slowly giving rise
to a very odd machine language (UC
Berkeley CS294-4 is in the process of
defining it by in-class argument), RAW
[3] from MIT uses a custom encoding
and the SCORE project here at Berkeley
uses a streaming language called TDF
[4].

While there have been
suggestions that common languages can
be developed to exploit these
architectures [5] the full power and use
of these languages remains an open area
of research.

Worse than the lack of a single
language, the biggest problems facing
concurrent dataflow systems research is
the missing connection between practical
and theoretical work. The purpose of
this paper is to define the problems and
state of the art in dataflow and
concurrent programming, in the hope of
starting to bring the two together. This
paper will reference both dataflow
programming models and dataflow
architectures. It should be understood
that the two are not inevitably tied
together, but will both benefit from
cooperative research.

Sections 2.0 Applications and 3.0
Frameworks give several motivating
applications and existing frameworks.
Section 4.0 Dataflow & Concurrency
discusses the foundations and relevant
history of dataflow and concurrent
systems, as well as describing their
interaction. Section 5.0 Models presents
some of the available formalisms and 6.0
Languages gives examples of specific,
practical languages.

2.0 Applications

This section describes four major
application areas of computer science all
of which rely on concurrent execution

CS263 Fall 2005 The Art of Controlled Chaos

UCB 2 2005

for high performance, and dataflow
models to achieve it.

This section is not intended only
to motivate interest in dataflow or
concurrency, but to provide focus and
constraints which the remaining sections
of this paper, and major dataflow
research, should address.

2.1 Hardware

Digital logic is perhaps the single
most widely understood example of a
concurrent, dataflow system. The fact is
that a circuit, unlike an imperative
command or an ISA instruction,
physically exists at all times, and will be
constantly performing some operation.
In this sense, concurrency in hardware is
inevitable.

There are two general classes of
digital hardware: synchronous and
asynchronous [6] [7]. The difference is
that while synchronous systems rely on a
global clock to orchestrate computation
and data movement, asynchronous
systems rely directly on the dataflow
firing rule (see section 4.1 Dataflow).

However, given that synchronous
systems have grown beyond designers’
ability to reason about the complete
design at once, large synchronous
systems are generally designed with
large components connected in a
dataflow style.

The primary constraint
associated with hardware design is that
the computation structures must be
entirely static; indirection and higher
order concepts are impractical. This
highlights some of the problems with the
original dataflow work at MIT as
described in [8].

2.2 Databases

With a history of over 25 years
databases are perhaps the longest

standing successful example of a
dataflow system. Since the relatively
early days of SystemR [9] at IBM
research, database query execution has
relied on the composition of iterative or
streaming operators. Each operator
provides or operates individually on
each row of a relational database table,
or “tuple.”

The need for high performance
has long since led to parallel execution
of query plans, as in the Volcano [10]
system and in more recent years,
Mariposa [11], TelegraphCQ [12] and
P2 [13] have renewed interest in this
field for efficient and highly concurrent
query execution.

Databases represent one of the
biggest successes of dataflow
programming, as well as an area where
performance and efficiency
improvements will always be needed.
Exactly these properties make databases
a valuable application to consider.

2.3 Networking

A single network, for example a
segment of Ethernet, is already a good
example of a concurrent dataflow
system, each node takes independent
action as the result of receiving a packet.
However with the advent of the internet,
it has come to the point where
concurrent, but interacting systems
might be separated by minutes and
miles, rather than milliseconds and feet.

What’s more networking
components like routers are almost ideal
dataflow components, operating on each
packet or datagram semi-independently
and often in concurrently, especially at
1Gbps line speeds.

Recent proposals for more
advanced or flexible routing systems
have often led to systems with dataflow
architectures and declarative dataflow

CS263 Fall 2005 The Art of Controlled Chaos

UCB 3 2005

languages for programming. Examples
include Click [14] and P2 [13].

Because of this, much of the
latest research into practical applications
of dataflow design has been in this area,
which like databases, is both a source of
research and a sink for useful results.

2.4 Summary of Applications

In this section we have presented
hardware, databases and networks as
both motivating and constraining
applications for concurrent dataflow
languages and architectures.

This list should by no means be
taken as exhaustive however, as areas
like scientific computing, multimedia,
GUIs, and web servers, are also
excellent applications for dataflow
techniques. However the above
applications represent difficult, well
understood and actively research
applications respectively with seemingly
different requirements, that when taken
in aggregate still effectively cover the
application space.

The reader is invited throughout
the remainder of this paper to
periodically reconsider problems
commonly seen from the imperative or
control flow perspective in light of what
they are reading.

3.0 Frameworks

This section presents a general
rundown of three of the primary
programming frameworks on top of
which various projects are attempting to
build dataflow models. This section is
not a discussion of best practices or good
ideas, but rather the existing practical
experience and ideas currently in use for
achieving dataflow like semantics at a
high level.

3.1 Shared Memory
The shared memory

programming framework is the most
common in use today. Languages like
C, C++ and Java all support this
organization, as do most operating
systems, compilers and multi-processor
architectures. Shared memory is so
prevalent that it is barely recognized to
be one choice among many.

In fact the shared memory
permeates computers to the level of a
standard ISA. Normal MIPS or IA32
instructions can be considered an
example of this, where the register-file
constitutes the shared memory.

As such all of the problems
which have in general retarded the
development of standard ISAs and
assembly languages apply to shared
memory systems at a higher level of
abstraction. This offers some insight as
to why consistency, coherence and
locking in imperative and object oriented
languages, present such a complicated
problem [15]: a programmer designing a
large system in a language like C, C++
or Java with threads and shared memory
faces almost exactly the same problems
as a programmer writing a single
function in assembly language, but with
the added complexity of non-atomic
operations.

Locking, aliasing, state
management, and operation interleaving
are all complicated and hard to
understand in the shared memory model,
which almost always forces a
programmer to make conservative
choices with respect to synchronization
and optimization, exactly the area
dataflow languages excel at simplifying.

3.2 Message Passing

Shared memory programming
has the inherent drawback that

CS263 Fall 2005 The Art of Controlled Chaos

UCB 4 2005

concurrency and data independence must
be simultaneously managed explicitly by
the programmer. This can be alleviated
by message passing systems, which
enforce data independence and
concurrency by the same mechanism. In
message passing systems data is divided
into independent messages, which can
then be processed independently.

Based on the above description
message passing is a first order
approximation to full dataflow as
described in section 4.1 Dataflow. The
main difference is that a message
passing system will often include
sequential execution of operations
between the receptions of messages,
leading to a model with concurrently
executing processes which communicate
by IPC messages.

In addition to web servers, and
some object oriented languages like
Smalltalk [16], [17] most highly parallel
super computers make use of some kind
of message passing system. In fact some
of the most common message passing
frameworks exist to implement
distributed shared memory.

Almost all large concurrent
systems will use either message passing
or shared memory to manage
concurrency and data sharing. While at
first glance this appears to be a major
classification of systems, [18] concludes
that in fact these two structures are
functional duals of each other, leading us
to believe that framework specific
languages will be duals of each other.

However, given that a message
passing framework can communicate
over large distributions and latencies,
while still performing useful work, it
should be clear that message passing
frameworks are generally more powerful
than shared memory.

3.3 Transaction Oriented
Building on the widespread

success of concurrency management in
database systems [19], many researchers
have proposed systems and languages
based on some concept of atomic, and
optionally concurrent operations.
Examples of active research in this are
include languages [20], formalisms [21]
and architectures [22].

However while there are many
practical examples of work in this field,
most of the theoretical basis lies in the
success of this framework for use in
databases, leaving somewhat of a void in
the formal analysis of these systems.

Problems like structural
congruence [23], [24] and performance
[25] which are introduced by these
“transaction oriented” systems remain
poorly studied, especially in the case of
projects like [22] where these ideas are
being applied at the most fundamental
levels of computer architecture and cost
margins are razor thin.

Transaction systems remain a
highly promising area of research, as
they offer ways to connect practically
realizable systems to a formal model
which can be analyzed. In addition both
shared memory and message passing
frameworks fit within transaction
frameworks.

3.4 Summary of Frameworks

In this section we have presented
several existing frameworks for
managing the flow of data and
computation.

The point of this section is that
while all of these frameworks are
compatible, can be, and often are,
implemented on top of more basic
languages like C, there is considerable
power to extending existing languages
and systems to fully incorporate one or

CS263 Fall 2005 The Art of Controlled Chaos

UCB 5 2005

more of these frameworks. Not the least
of which is the resulting availability of
formal and theoretical work which could
then be applied to optimization and
correctness proofs.

4.0 Dataflow & Concurrency

Taken together sections 2.0
Applications and 3.0 Frameworks
provide a relatively complete outline of
the motivations and requirements for
dataflow programming or systems
design.

This section formally defines
both the terms “dataflow” and
“concurrent.” But more importantly it
provides a survey of both the current and
historical work in dataflow languages
and architectures, followed by a
discussion of how this applies to
concurrent programming.

4.1 Dataflow

There are two obstacles to
infinitely fast execution of a program.
First, processing takes time. Second,
each operation requires its’ inputs to be
ready before it can begin computing.

Dataflow programming opens up
interesting and efficient implementation
options by accurately capturing the true
data dependencies between
computations. Because the exact flow of
data elements, often called “tokens,” is
precisely laid out in these languages, the
delays which are not the result of the
above two limitations can be controlled
or removed.

The term “dataflow” is used in
this paper to refer to those systems,
architectures, models and languages in
which computation is driven by the
availability and motion of data. The
term “dataflow” is used in contrast to
“control flow” in which computation is
driven by some form of imperative

controls such as in structured languages
like C.

Dataflow languages and systems
are generally characterized by the
“dataflow firing rule” which states that
an operation may take place as soon as
all of its’ inputs are present.

Those familiar with Petri-Nets
(see section 5.2 Petri-Nets) will
recognize this as the transition firing
rule. In fact some of the original work
by Dennis [26] describes a dataflow
architecture which is essentially a simple
hardware realization of a colored marked
graph, Petri-Net. That is, tokens have
values which can be operated upon, and
no more than one token may appear at
each place. This is the basis of the view
that dataflow programming is a concrete
implementation of abstract computation
graphs [27].

The best known history of the
term “dataflow” begins with Dennis’s
work at MIT, which later blossomed into
projects like ETS [8] and Monsoon
including a series of papers by D.E.
Culler [28] [29] [30].

Most early work, such as ETS,
suggests an architecture and language,
which in more current terms would be
called “push dataflow.” Each instruction
includes an operation and a continuation,
i.e. the instruction(s) to which its’
result(s) should be delivered. This is a
stark contrast to “pull dataflow” where
an instruction is specified as a list of
instructions which generate its’ inputs
and an operation to produce a single
output. Recently systems like Click [14]
and P2 [13] have arisen which are
careful to include both push and pull
elements, suggesting that formal analysis
of this space is wanting.

Another characteristic of the
early dataflow architectures is their
reliance on dynamic program structure,

CS263 Fall 2005 The Art of Controlled Chaos

UCB 6 2005

often realized as a tree of activation
records rather than a stack. These
projects did not significantly exploit
compile time techniques for flattening
this tree or transforming it to a static
structure, instead relying entirely on
hardware to do this at run time.

Newer projects, like Score [4],
RAMP [31] and P2 [13], generally
convert this dynamic structure to a static
one, as much as possible in order to
simplify implementation and increase
performance. In fact in very low level
hardware systems like Score, RAMP and
most DSP systems, one of the key
requirements for a practical
implementation is the elimination of any
dynamic structure through compile time
transformations such as those suggested
by [27]. This is one of the primary
reasons for including section 2.1
Hardware in this paper.

As a final historical note, it is
interesting that Dennis and Misunas
describe at the end of [26], a possible
distributed architecture, which is
surprisingly similar to WaveScalar [1]
and FLEET [2], both of which are being
built and explored nearly 30 years later.
As with any long dormant research, this
connection should suggest some caution
in modern research. While it is likely
that the ideas are now ready for new
work, it is also possible that the same
dead ends will be met as 25 years ago.

One of the main points of this
survey is to attempt to tie recent and
historical, theoretical and practical
research together, in order to avoid past
problems.

4.2 Concurrency

In this paper, two events or
computations are “concurrent” if they
have an unknown temporal relationship.
That is to say they may be simultaneous,

parallel or sequential: no relationship is
known.

As stated at the beginning of this
paper, a sequential von Neumann model
of computers, while easy to understand,
is insufficient for high performance
systems, and is inadequate to capture the
issues in operating systems and
architecture design. As such concurrent
models are required, and it is the
combination of this requirement and the
existence of program analysis techniques
such as in [27] and [32] which drives our
interest in dataflow programming.

Though [27] spends a lot of time
talking about translating from imperative
shared memory programs to dataflow
(similar to basic block analysis
techniques), when a system in specified
in a dataflow language, the programmer
is given the opportunity to explicitly
create only the required sequencing.
This increases the allowable flexibility
of the compiler and eventual run time
system to modify the program for
efficiency reasons without affecting its’
correctness.

The key to increasing
concurrency in a dataflow language is
the existence of a very large,
inexpensive synchronization namespace,
as described in [8]. They state “To
obtain high performance on a
[concurrent] machine lacking these
features, a program must be partitioned
into … processes that operate … on
local data and rarely interact.” This
statement embodies the main reason for
the pervasive interest in dataflow
languages and systems: they represent an
easily understood way to transfer the
responsibility of the time/space tradeoff
from the programmer to the run time
system.

This transfer significantly
increases the complexity of the run time

CS263 Fall 2005 The Art of Controlled Chaos

UCB 7 2005

system, as evidenced by the problems
encountered by projects like Monsoon,
the ETS and TTDA at MIT, and it
remains a problem for more modern
systems. However as papers like [27]
suggest, there exist simple yet very
powerful compile time analysis
techniques which should help to conquer
these issues.

There are two canonical
examples of the dangers inherent in a
potentially unbounded synchronization
space. Managing an excess of
parallelism [28] exposed by dataflow
architectures, and the difficulty of
deciding congruence of concurrent
systems as briefly outlined in [23].

The resource requirements
problem inherent in dataflow
architectures also resulted in problems in
bounding storage requirements in the
1980s. This highlights the need for
better formalisms to reason about
concurrent dataflow systems. ETS as
described in [8], attempts to explicitly
capture state requirements, a definite
positive step, which is none the less
ignored by most of the models in section
5.0 Models. In fact the original
WaveScalar specification includes
unbounded buffers between dataflow
elements, a clear problem in past
architectures.

4.3 Concurrent Dataflow

Dataflow languages are an ideal
way to capture the exact “meaning” of a
programming, especially with respect to
concurrency and ordering requirements.
The use of the simple dataflow firing
rule, combined with a large
synchronization namespace for tokens
allows a programmer to specify the
desired behavior in a very precise
manner. What’s more, dataflow

architectures allow these specifications
to be directly executed.

However, problems such as
bounded storage, practical
implementation requirements, dynamic
computation structures and under
application of formal models have all
hindered efforts in this direction.

5.0 Models

This section describes four
possible formal models for reasoning
about concurrency and dataflow. None
of them is perfect, each has serious
flaws, and as such they have been
chosen not only for their relative fame,
but also for the interesting lessons to be
learned.

5.1 Process Networks

Process networks [33] represent
one of the purest dataflow formalisms, in
no small part because of work like in
[34], where Lee gives a denotational
semantics for standard “Dennis
Dataflow” which equates it with process
networks.

Process networks are
characterized by a graph of statically
connected dataflow operators which
operate over lower order units of data.

Significant work in this field by
Lee and others [35], has made it
particularly amenable to resource
constrained digital signal processing and
hardware applications.

These areas are characterized by
their hard real time constraints, static,
numerically intensive computation
structure and their need to handle infinite
inputs.

It is the last requirement, infinite
I/O, which forces a break from
traditional programming models founded
on �-calculus, which is unusable in
infinite I/O situations [34].

CS263 Fall 2005 The Art of Controlled Chaos

UCB 8 2005

5.2 Petri-Nets

Petri-Nets [36] are perhaps the
simplest model for concurrent and
dataflow systems. In addition to the fact
that they are an easily understood
graphical model, standard Petri-Nets
have exactly one rule for execution,
which represents a highly simplified
version of the dataflow firing rule.

Unfortunately with this simple
one-rule version, Petri-Nets are not
Turing complete. However with the
addition of inhibitor arcs, Petri-Nets are
become “extended Petri-Nets” which are
Turing complete. This addition means
that not only can Petri-Nets model both
low and high level constructs, they are
defined by exactly two rules.

On of the simplest shortcoming
of Petri-Nets is the lack of a uniform
easily understood textual representation
for them. This somewhat limits their
utility in formal analysis, as it is hard to
write proofs with large graphics.

However the more deeply rooted
problem with first order Petri-Nets is the
exponentially lower expressivity, which
seriously retards their applicability to
larger problems. The fact of the matter
is that even with techniques for
managing partial nets, it remains very
difficult to think about Petri-Nets. Even
the simplest examples can be
prohibitively complicated to write and
verify.

5.3 �-Calculus

�-Calculus is one of the widest
known and best studied formalisms for
modeling concurrent, and potentially
non-deterministic computation. It is
based on the parallel composition and
branching of sequential processes, which
communicate channel names over

channels. A more complete introduction
can be found in [23] or [37].

One key fault with process
calculi in general is their encoding of
time and state. There is no reason in
general to conflate the two issues, and
many years of research have gone into
separating the two in the form of out-of-
order execution (Tomasulo’s Algorithm
[38], ROBs, etc). Unfortunately �-
calculus, and many others implicitly
model temporal and state progression
with the same dotted prefix notation.

As a side effect of this conflation
of state and time �-calculus may require
unbounded state, and the current state is
not explicit in the text of the model.
This is because state, for each process is
modeled as an environment in the
programming language sense: new
channels are always added to it, never
subtracted. Of course, this makes it easy
to write, but very hard to reason about,
and effectively impossible to implement,
never mind debug.

Furthermore the “!” operator in �
-calculus models exactly the kind of
deadlock inducing behavior which any
practical implementation must shun.
While we must be able to model this,
another construct, such as pull dataflow,
would be better suited to practical use.

5.4 Mobile Ambients

Mobile Ambients [39], [40] are a
formalism proposed by Luca Cardelli for
modeling mobility and security. As such
they are very good for modeling ideal
security situations.

Mobile Ambients add location
and motion on top of a �-Calculus like
base, without conflating issues or adding
syntactic sugar, and the inherent
hierarchy is well suited to modeling the
physical world. However because of
their heritage Mobile Ambients are bad

CS263 Fall 2005 The Art of Controlled Chaos

UCB 9 2005

at representing state, the same as �-
Calculus. Worse yet, they are quite
unsuccessfully for modeling security, as
perfect capability based systems are
easily described, but security breaches
and cryptographic cracking are ignored.

Despite the drawbacks of Mobile
Ambients, the idea that locality should
be a first order concept at the model
level is of key importance and the
primary reason for their inclusion in this
paper. The fact is that models for
dataflow and concurrency have often
ignored the spatial dimension of the
specification making it hard for a system
or programmer to express a trade
between space and time.

5.5 Summary of Models

Aside from the four formalisms
presented in this section there are
numerous others including guarded
commands [41], CSP [42], CQP [43],
CCS, the Actor Model [44], �-Calculus
[21], Session Types [45] and
Specification Diagrams [46], some of
which complement the above four, but
all of which aim to model concurrency.

The goal of this section was to
highlight two things: first there are a
number of models for concurrent
dataflow systems, and second, there are
two basic flaws which can be introduced
to a modeling formalism. The
fundamental modeling flaw is a models
inability to capture undesirable
occurrences so as to be able to prove that
they do not arise. The other flaw arises
when a model captures some interesting
feature of the system being modeled in
an implicit way, making explicit
reasoning difficult if not impossible.

6.0 Languages

This section discusses real world
languages and systems, all of which are

built on dataflow foundations, but none
of which use the same terminology.

One of the key points of this
paper is a survey of the following
languages.

6.1 SQL

SQL is widely used and widely
known, making it a perfect example of a
successful dataflow language, despite
the fact that it isn’t always seen as one.

The key reason SQL is amenable
to dataflow execution and optimization
techniques is its declarative nature. SQL
specifies what the answer should be, but
gives surprisingly little information
about how to compute it, representing an
ideal tradeoff between programmer and
run time responsibility.

The process of transforming a
declarative SQL query to a dataflow
query plan is called “query
optimization” [47] and has been around
for 30 years, but even in this field new
ideas like Eddies [48] promise
interesting results.

6.2 BlueSpec

BlueSpec is a hardware
description language which started as a
research project at first MIT [49] then
CMU, and has since been turned into a
corporate product [50].

BlueSpec is based on the
concepts presented by Dijkstra in [41].
Commands are called “rules” and are
grouped along functional lines, in an
object oriented fashion. The compiler
automatically determines which rules
(commands) can be run concurrently,
thereby resolving Dijkstra’s choice
operator at compile time.

Of course there are no loops,
forcing the programmer to manage loop
parallelism and state explicitly. Also, as
this is a very practical language it

CS263 Fall 2005 The Art of Controlled Chaos

UCB 10 2005

includes arbitration as syntactic sugar,
allowing rules (commands) to have
precedence.

The final and largest difference
between BlueSpec and the guarded
command formalism is that BlueSpec,
like most hardware description
languages, lacks facilities for
sequencing. All rules are concurrent.

6.3 P2, Overlog & Click

The P2 project [13] began as a
combination of work in distributed
databases and P2P overlay networks. As
such is has led to a declarative logic
programming language mixed with
dataflow, and named “Overlog.”
Overlog is an extension to Prolog with
locations for logic rules. Rules now
represent the creation or arrival of a
relational tuple.

A more widely known system,
with a less interesting language is The
Click Modular Router [14]. While it is
not really a router, it remains good
example of a real world use of dataflow
programming, and one of the first times
the author of this paper has seen the
explicit management of the dichotomy
between push and pull dataflow.

6.4 Liberty & RDL

The Liberty project [51] at
Princeton has applied standard
programming language techniques to
hardware design, including
polymorphism, overloading and
techniques from aspect oriented
programming.

RDL [31], a language being
developed by the author of this paper, is
very similar to Liberty and others, in that
it aims to capture a specification of
digital logic as a series of interconnected
dataflow like operators. RDL is part of
the RAMP [52] project whose goal is to

accelerate the development of multi-core
architectures, operating systems and
languages by providing a rapid
simulation platform. Thus concurrency,
networking and hardware issues are all
highly relevant to this work.

7.0 Conclusion

This paper contains: a survey of
applications and frameworks for
concurrent dataflow programming, a
brief history of dataflow languages and
architectures, and their relation to
concurrency, and several formalisms and
practical languages for reasoning about
and expressing dataflow programs and
architectures.

This paper has outlined several
problems and areas of open research for
future work, as well as a number of
existing projects in an effort to start
closing the gap between the practical and
theoretical work in this field.

8.0 Future Work

There remains significant future
work in this field, including the
development of better models for
concurrent dataflow systems and their
accompanying type systems. Both
session types [45] and scheduling [35]
might shed some light on this area.

The ideal end result would be the
introduction of formal languages and
models to real world applications at such
a level as to allow subjects like dataflow
programming and analysis and
concurrency to be effectively taught at
the undergraduate level, rather than
remaining a “black art” as they are
today.

9.0 References

1. Swanson, S., et al. WaveScalar. in 36th

International Symposium on

CS263 Fall 2005 The Art of Controlled Chaos

UCB 11 2005

Microarchitecture. San Diego, CA.
2003.

2. Sutherland, I., FLEET – A One-
Instruction Computer. 2005. p. 1-12.

3. Taylor, M.B., et al., The Raw
microprocessor: a computational fabric
for software circuits and general-
purpose programs. IEEE Micro, 2002.
22(2): p. 25-35.

4. Caspi, E., Programming SCORE. 2005.
5. Mattson, P., et al., Stream Virtual

Machine and Two-Level Compilation
Model for Streaming Architectures and
Languages. 2004. p. 1-3.

6. Sutherland, I. and S. Fairbanks. GasP: a
minimal FIFO control. in Proceedings
Seventh International Symposium on
Asynchronous Circuits and Systems.
ASYNC 2001. Salt Lake City, UT. 2001.

7. Ebergen, J. Squaring the FIFO in GasP.
in Proceedings Seventh International
Symposium on Asynchronous Circuits
and Systems. ASYNC 2001. Salt Lake
City, UT. 2001.

8. Papadopoulos, G.M. and D.E. Culler.
Monsoon: an explicit token-store
architecture. in Seattle, WA. 1990.

9. Chamberlain, D.D., et al., A history and
evaluation of System R.
Communications of the ACM, 1981.
24(10): p. 632-46.

10. Graefe, G. Encapsulation of parallelism
in the volcano query processing system.
in 1990 ACM SIGMOD International
Conference on Management of Data.
Atlantic City, NJ. 1990.

11. Stonebraker, H., et al., Mariposa: a
wide-area distributed database system.
Vldb Journal, 1996. 5(1): p. 48-63.

12. Chandrasekaran, S., et al.
TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World. in
CIDR. 2003.

13. Loo, B.T., et al., Implementing
Declarative Overlays. 2005: UC
Berkeley. p. 1-16.

14. Kohler, E., et al., The Click modular
router. ACM Transactions on Computer
Systems, 2000. 18(3): p. 263-97.

15. Maessen, J.W., Arvind, and S. Xiaowei.
Improving the Java memory model
using CRF. in OOPSLA 2000.
Conference on Object-Oriented
Programming Systems, Languages and
Applications. Minneapolis, MN. 2000.

16. Ingalls, D.H.H., Design principles
behind Smalltalk. Byte, 1981. 6(8): p.
286-98.

17. Ingalls, D., et al. Fabrik: a visual
programming environment. in ACM
SIGPLAN 3rd Annual Conference on
Object-Orientated Programming
Systems, Languages, and Applications
(OOPSLA 88). San Diego, CA. 1988.

18. Lauer, H.C. and R.M. Needham. On the
duality of operating system structures.
in Le Chesnay, France. 2-4 Oct. 1978.
1978.

19. Franklin, M.J., Concurrency Control
and Recovery, in The Handbook of
Computer Science and Engineering,
A.B. Tucker, Editor. 1997, CRC Press :
Published in cooperation with ACM:
Boca Raton, Fla.

20. Hoe, J.C., Operation-Centric Hardware
Description

and Synthesis, in Electrical Engineering and
Computer Science. 2000, Massachusetts
Institute of Technology: Boston. p. 139.

21. Field, J. and C.A. Varela. Transactors:
a programming model for maintaining
globally consistent distributed state in
unreliable environments. in POLP
2005: 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of
Programming Languages. Long Beach,
CA. 2005.

22. Ananian, C.S., et al. Unbounded
transactional memory. in Proceedings.
11th International Symposium on High-
Performance Computer Architecture.
San Francisco, CA. 2005.

23. Pierce, B., C., Foundational Calculi for
Programming Languages, in CRC
Handbook of Computer Science and
Engineering. 1995.

24. Lohman, G.M. Grammar-like
functional rules for representing query
optimization alternatives. in SIGMOD
International Conference on
Management of Data. Chicago, IL.
1988.

25. Agrawal, R., M.J. Carey, and M. Livny,
Concurrency control performance
modeling: alternatives and
implications. ACM Transactions on
Database Systems, 1987. 12(4): p. 609-
54.

26. Dennis, J.B. and D.P. Misunas. A
preliminary architecture for a basic

CS263 Fall 2005 The Art of Controlled Chaos

UCB 12 2005

data-flow processor. in Houston, TX.
1975.

27. Beck, M., R. Johnson, and K. Pingali,
From control flow to dataflow. Journal
of Parallel & Distributed Computing,
1991. 12(2): p. 118-29.

28. Culler, D.E. and Arvind. Resource
requirements of dataflow programs. in
Honolulu, HI. 1988.

29. Culler, D.E., et al. Fine-grain
parallelism with minimal hardware
support: a compiler-controlled threaded
abstract machine. in Fourth
International Conference on
Architectural Support for Programming
Languages and Operating Systems.
Santa Clara, CA. 1991.

30. Culler, D.E., K.E. Schauser, and T. von
Eicken. Two fundamental limits on
dataflow multiprocessing. in
Architectures and Compilation
Techniques for Fine and Medium Grain
Parallelism. IFIP WG10.3 Working
Conference. Orlando, FL. 1993.

31. Gibeling, G., A. Schultz, and K.
Asanovic, RAMP Architecture &
Description Language. 2005, UC
Berkeley.

32. Swanson, S., et al., Dataflow: The Road
Less Complex. 2003. p. 13.

33. Lee, E.A. and T.M. Parks, Dataflow
process networks. Proceedings of the
IEEE, 1995. 83(5): p. 773-801.

34. Lee, E.A., A Denotational Semantics for
Dataflow with Firing. 1997: Berkeley,
CA.

35. Buck, J.T. and E.A. Lee. Scheduling
dynamic dataflow graphs with bounded
memory using the token flow model.

36. Murata, T., Petri nets: Properties,
analysis and applications. Proceedings
of the IEEE, 1989. 77(4): p. 541-80.

37. Milner, R., The Polyadic pi-Calculus: a
Tutorial. 1991.

38. Tomasulo, R.M., An Efficient Algorithm
for Exploiting Multiple Arithmetic
Units.pdf. IBM Journal, 1967.

39. Cardelli, L. and A.D. Gordon, Mobile
Ambients. 2003.

40. Cardelli, L. Mobility and security. in
Proceedings of Secure Computation.
Marktoberdorf, Germany. 27 July-8
Aug. 1999. 2000.

41. Dijkstra, E.W., Guarded commands,
nondeterminacy and formal derivation

of programs. Communications of the
ACM, 1975. 18(8): p. 453-7.

42. Hoare, C.A.R., Communicating
sequential processes. Communications
of the ACM, 1978. 21(8): p. 666-77.

43. Gay, S.J. and R. Nagarajan.
Communicating Quantum Processes. in
POLP 2005: 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of
Programming Languages. Long Beach,
CA. 2005.

44. Agha, G.A., Actors: a Model of
Concurrent Computation in Distributed
Systems. 1986, MIT Press.

45. Gay, S., V. Vasconcelos, and A.
Ravara, Session Types for Inter-Process
Communication. 2003, University of
Glasgow: Glasgow, Scotland.

46. Smith, S.F. and C.L. Talcott,
Specification diagrams for actor
systems. Higher-Order & Symbolic
Computation, 2002. 15(4): p. 301-48.

47. Griffiths Selinger, P., et al., Access path
selection in a relational database
management system. 1 Aug. 1979,
1979: p. 59.

48. Avnur, R. and J.M. Hellerstein. Eddies:
continuously adaptive query processing.
in 2000 ACM SIGMOD. International
Conference on Management of Data.
Dallas, TX. 2000.

49. Hoe, J.C. and Arvind, Operation-
centric hardware description and
synthesis. IEEE Transactions on
Computer-Aided Design of Integrated
Circuits & Systems, 2004. 23(9): p.
1277-88.

50. BlueSpec Inc., BlueSpec Overview.
2005, BlueSpec Inc: Waltham, MA. p.
2.

51. Manish, V., N. Vachharajani, and D.I.
August. The Liberty structural
specification language: a high-level
modeling language for component
reuse. in 2004 ACM SIGPLAN
Conference on Programming Language
Design and Implementation (PLDI'04).
Washington, DC. 2004.

52. Wawrzynek, J., et al., RAMP Research
Accelerator for Multiple Processors.
2005.

