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1.0 Introduction 

There are currently a wide 
variety of systems and architecture 
projects attempting to design or program 
in a dataflow style.  The fundamental 
reason for this is a desire to expose 
concurrency at various levels, and 
support a more natural style of 
programming both for modeling and 
implementation reasons. 

Working with concurrency 
exposes the fundamental flaw in the von 
Neumann view that computers are 
sequential imperative machines: no 
sufficiently complex physically realistic 
system can or will do exactly one thing 
at a time.  As such system designers 
have begun to realize the immense 
performance gains which could be 
achieved by exposing a more parallel, or 
at least a more realistic, model of a 
computer to the programmer. 

Unfortunately there exist today 
no widely used general purpose 
languages for describing dataflow and 
concurrent programs.  Most projects 
have their own style or language: 
WaveScalar [1] at Washington 
recompiles Alpha binaries, FLEET [2] 
by Ivan Sutherland is slowly giving rise 
to a very odd machine language (UC 
Berkeley CS294-4 is in the process of 
defining it by in-class argument), RAW 
[3] from MIT uses a custom encoding 
and the SCORE project here at Berkeley 
uses a streaming language called TDF 
[4]. 

While there have been 
suggestions that common languages can 
be developed to exploit these 
architectures [5] the full power and use 
of these languages remains an open area 
of research. 

Worse than the lack of a single 
language, the biggest problems facing 
concurrent dataflow systems research is 
the missing connection between practical 
and theoretical work.  The purpose of 
this paper is to define the problems and 
state of the art in dataflow and 
concurrent programming, in the hope of 
starting to bring the two together.  This 
paper will reference both dataflow 
programming models and dataflow 
architectures.  It should be understood 
that the two are not inevitably tied 
together, but will both benefit from 
cooperative research. 

Sections 2.0 Applications and 3.0 
Frameworks give several motivating 
applications and existing frameworks.  
Section 4.0 Dataflow & Concurrency 
discusses the foundations and relevant 
history of dataflow and concurrent 
systems, as well as describing their 
interaction.  Section 5.0 Models presents 
some of the available formalisms and 6.0 
Languages gives examples of specific, 
practical languages. 

 
2.0 Applications 

This section describes four major 
application areas of computer science all 
of which rely on concurrent execution 
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for high performance, and dataflow 
models to achieve it. 

This section is not intended only 
to motivate interest in dataflow or 
concurrency, but to provide focus and 
constraints which the remaining sections 
of this paper, and major dataflow 
research, should address. 

 
2.1 Hardware 

Digital logic is perhaps the single 
most widely understood example of a 
concurrent, dataflow system.  The fact is 
that a circuit, unlike an imperative 
command or an ISA instruction, 
physically exists at all times, and will be 
constantly performing some operation.  
In this sense, concurrency in hardware is 
inevitable. 

There are two general classes of 
digital hardware: synchronous and 
asynchronous [6] [7].  The difference is 
that while synchronous systems rely on a 
global clock to orchestrate computation 
and data movement, asynchronous 
systems rely directly on the dataflow 
firing rule (see section 4.1 Dataflow). 

However, given that synchronous 
systems have grown beyond designers’ 
ability to reason about the complete 
design at once, large synchronous 
systems are generally designed with 
large components connected in a 
dataflow style. 

The primary constraint 
associated with hardware design is that 
the computation structures must be 
entirely static; indirection and higher 
order concepts are impractical.  This 
highlights some of the problems with the 
original dataflow work at MIT as 
described in [8]. 

 
2.2 Databases 

With a history of over 25 years 
databases are perhaps the longest 

standing successful example of a 
dataflow system.  Since the relatively 
early days of SystemR [9] at IBM 
research, database query execution has 
relied on the composition of iterative or 
streaming operators.  Each operator 
provides or operates individually on 
each row of a relational database table, 
or “tuple.” 

The need for high performance 
has long since led to parallel execution 
of query plans, as in the Volcano [10] 
system and in more recent years, 
Mariposa [11], TelegraphCQ [12] and 
P2 [13] have renewed interest in this 
field for efficient and highly concurrent 
query execution. 

Databases represent one of the 
biggest successes of dataflow 
programming, as well as an area where 
performance and efficiency 
improvements will always be needed.  
Exactly these properties make databases 
a valuable application to consider. 

 
2.3 Networking 

A single network, for example a 
segment of Ethernet, is already a good 
example of a concurrent dataflow 
system, each node takes independent 
action as the result of receiving a packet.  
However with the advent of the internet, 
it has come to the point where 
concurrent, but interacting systems 
might be separated by minutes and 
miles, rather than milliseconds and feet. 

What’s more networking 
components like routers are almost ideal 
dataflow components, operating on each 
packet or datagram semi-independently 
and often in concurrently, especially at 
1Gbps line speeds. 

Recent proposals for more 
advanced or flexible routing systems 
have often led to systems with dataflow 
architectures and declarative dataflow 
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languages for programming.  Examples 
include Click [14] and P2 [13]. 

Because of this, much of the 
latest research into practical applications 
of dataflow design has been in this area, 
which like databases, is both a source of 
research and a sink for useful results. 

 
2.4 Summary of Applications 

In this section we have presented 
hardware, databases and networks as 
both motivating and constraining 
applications for concurrent dataflow 
languages and architectures. 

This list should by no means be 
taken as exhaustive however, as areas 
like scientific computing, multimedia, 
GUIs, and web servers, are also 
excellent applications for dataflow 
techniques.  However the above 
applications represent difficult, well 
understood and actively research 
applications respectively with seemingly 
different requirements, that when taken 
in aggregate still effectively cover the 
application space. 

The reader is invited throughout 
the remainder of this paper to 
periodically reconsider problems 
commonly seen from the imperative or 
control flow perspective in light of what 
they are reading. 

 
3.0 Frameworks 

This section presents a general 
rundown of three of the primary 
programming frameworks on top of 
which various projects are attempting to 
build dataflow models.  This section is 
not a discussion of best practices or good 
ideas, but rather the existing practical 
experience and ideas currently in use for 
achieving dataflow like semantics at a 
high level. 

 

3.1 Shared Memory 
The shared memory 

programming framework is the most 
common in use today.  Languages like 
C, C++ and Java all support this 
organization, as do most operating 
systems, compilers and multi-processor 
architectures.  Shared memory is so 
prevalent that it is barely recognized to 
be one choice among many. 

In fact the shared memory 
permeates computers to the level of a 
standard ISA.  Normal MIPS or IA32 
instructions can be considered an 
example of this, where the register-file 
constitutes the shared memory. 

As such all of the problems 
which have in general retarded the 
development of standard ISAs and 
assembly languages apply to shared 
memory systems at a higher level of 
abstraction.  This offers some insight as 
to why consistency, coherence and 
locking in imperative and object oriented 
languages, present such a complicated 
problem [15]: a programmer designing a 
large system in a language like C, C++ 
or Java with threads and shared memory 
faces almost exactly the same problems 
as a programmer writing a single 
function in assembly language, but with 
the added complexity of non-atomic 
operations. 

Locking, aliasing, state 
management, and operation interleaving 
are all complicated and hard to 
understand in the shared memory model, 
which almost always forces a 
programmer to make conservative 
choices with respect to synchronization 
and optimization, exactly the area 
dataflow languages excel at simplifying. 

 
3.2 Message Passing 

Shared memory programming 
has the inherent drawback that 
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concurrency and data independence must 
be simultaneously managed explicitly by 
the programmer.  This can be alleviated 
by message passing systems, which 
enforce data independence and 
concurrency by the same mechanism.  In 
message passing systems data is divided 
into independent messages, which can 
then be processed independently. 

Based on the above description 
message passing is a first order 
approximation to full dataflow as 
described in section 4.1 Dataflow.  The 
main difference is that a message 
passing system will often include 
sequential execution of operations 
between the receptions of messages, 
leading to a model with concurrently 
executing processes which communicate 
by IPC messages. 

In addition to web servers, and 
some object oriented languages like 
Smalltalk [16], [17] most highly parallel 
super computers make use of some kind 
of message passing system.  In fact some 
of the most common message passing 
frameworks exist to implement 
distributed shared memory. 

Almost all large concurrent 
systems will use either message passing 
or shared memory to manage 
concurrency and data sharing.  While at 
first glance this appears to be a major 
classification of systems, [18] concludes 
that in fact these two structures are 
functional duals of each other, leading us 
to believe that framework specific 
languages will be duals of each other. 

However, given that a message 
passing framework can communicate 
over large distributions and latencies, 
while still performing useful work, it 
should be clear that message passing 
frameworks are generally more powerful 
than shared memory. 

 

3.3 Transaction Oriented 
Building on the widespread 

success of concurrency management in 
database systems [19], many researchers 
have proposed systems and languages 
based on some concept of atomic, and 
optionally concurrent operations.  
Examples of active research in this are 
include languages [20], formalisms [21] 
and architectures [22]. 

However while there are many 
practical examples of work in this field, 
most of the theoretical basis lies in the 
success of this framework for use in 
databases, leaving somewhat of a void in 
the formal analysis of these systems. 

Problems like structural 
congruence [23], [24] and performance 
[25] which are introduced by these 
“transaction oriented” systems remain 
poorly studied, especially in the case of 
projects like [22] where these ideas are 
being applied at the most fundamental 
levels of computer architecture and cost 
margins are razor thin. 

Transaction systems remain a 
highly promising area of research, as 
they offer ways to connect practically 
realizable systems to a formal model 
which can be analyzed.  In addition both 
shared memory and message passing 
frameworks fit within transaction 
frameworks. 

 
3.4 Summary of Frameworks 

In this section we have presented 
several existing frameworks for 
managing the flow of data and 
computation. 

The point of this section is that 
while all of these frameworks are 
compatible, can be, and often are, 
implemented on top of more basic 
languages like C, there is considerable 
power to extending existing languages 
and systems to fully incorporate one or 



CS263 Fall 2005  The Art of Controlled Chaos 

UCB 5 2005 

more of these frameworks.  Not the least 
of which is the resulting availability of 
formal and theoretical work which could 
then be applied to optimization and 
correctness proofs. 

 
4.0 Dataflow & Concurrency 

Taken together sections 2.0 
Applications and 3.0 Frameworks 
provide a relatively complete outline of 
the motivations and requirements for 
dataflow programming or systems 
design. 

This section formally defines 
both the terms “dataflow” and 
“concurrent.”  But more importantly it 
provides a survey of both the current and 
historical work in dataflow languages 
and architectures, followed by a 
discussion of how this applies to 
concurrent programming. 

 
4.1 Dataflow 

There are two obstacles to 
infinitely fast execution of a program.  
First, processing takes time.  Second, 
each operation requires its’ inputs to be 
ready before it can begin computing. 

Dataflow programming opens up 
interesting and efficient implementation 
options by accurately capturing the true 
data dependencies between 
computations.  Because the exact flow of 
data elements, often called “tokens,” is 
precisely laid out in these languages, the 
delays which are not the result of the 
above two limitations can be controlled 
or removed. 

The term “dataflow” is used in 
this paper to refer to those systems, 
architectures, models and languages in 
which computation is driven by the 
availability and motion of data.  The 
term “dataflow” is used in contrast to 
“control flow” in which computation is 
driven by some form of imperative 

controls such as in structured languages 
like C. 

Dataflow languages and systems 
are generally characterized by the 
“dataflow firing rule” which states that 
an operation may take place as soon as 
all of its’ inputs are present. 

Those familiar with Petri-Nets 
(see section 5.2 Petri-Nets) will 
recognize this as the transition firing 
rule.  In fact some of the original work 
by Dennis [26] describes a dataflow 
architecture which is essentially a simple 
hardware realization of a colored marked 
graph, Petri-Net.  That is, tokens have 
values which can be operated upon, and 
no more than one token may appear at 
each place.  This is the basis of the view 
that dataflow programming is a concrete 
implementation of abstract computation 
graphs [27]. 

The best known history of the 
term “dataflow” begins with Dennis’s 
work at MIT, which later blossomed into 
projects like ETS [8] and Monsoon 
including a series of papers by D.E. 
Culler [28] [29] [30]. 

Most early work, such as ETS, 
suggests an architecture and language, 
which in more current terms would be 
called “push dataflow.”  Each instruction 
includes an operation and a continuation, 
i.e. the instruction(s) to which its’ 
result(s) should be delivered.  This is a 
stark contrast to “pull dataflow” where 
an instruction is specified as a list of 
instructions which generate its’ inputs 
and an operation to produce a single 
output.  Recently systems like Click [14] 
and P2 [13] have arisen which are 
careful to include both push and pull 
elements, suggesting that formal analysis 
of this space is wanting. 

Another characteristic of the 
early dataflow architectures is their 
reliance on dynamic program structure, 
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often realized as a tree of activation 
records rather than a stack.  These 
projects did not significantly exploit 
compile time techniques for flattening 
this tree or transforming it to a static 
structure, instead relying entirely on 
hardware to do this at run time. 

Newer projects, like Score [4], 
RAMP [31] and P2 [13], generally 
convert this dynamic structure to a static 
one, as much as possible in order to 
simplify implementation and increase 
performance.  In fact in very low level 
hardware systems like Score, RAMP and 
most DSP systems, one of the key 
requirements for a practical 
implementation is the elimination of any 
dynamic structure through compile time 
transformations such as those suggested 
by [27].  This is one of the primary 
reasons for including section 2.1 
Hardware in this paper. 

As a final historical note, it is 
interesting that Dennis and Misunas 
describe at the end of [26], a possible 
distributed architecture, which is 
surprisingly similar to WaveScalar [1] 
and FLEET [2], both of which are being 
built and explored nearly 30 years later.  
As with any long dormant research, this 
connection should suggest some caution 
in modern research.  While it is likely 
that the ideas are now ready for new 
work, it is also possible that the same 
dead ends will be met as 25 years ago. 

One of the main points of this 
survey is to attempt to tie recent and 
historical, theoretical and practical 
research together, in order to avoid past 
problems. 

 
4.2 Concurrency 

In this paper, two events or 
computations are “concurrent” if they 
have an unknown temporal relationship.  
That is to say they may be simultaneous, 

parallel or sequential: no relationship is 
known. 

As stated at the beginning of this 
paper, a sequential von Neumann model 
of computers, while easy to understand, 
is insufficient for high performance 
systems, and is inadequate to capture the 
issues in operating systems and 
architecture design.  As such concurrent 
models are required, and it is the 
combination of this requirement and the 
existence of program analysis techniques 
such as in [27] and [32] which drives our 
interest in dataflow programming. 

Though [27] spends a lot of time 
talking about translating from imperative 
shared memory programs to dataflow 
(similar to basic block analysis 
techniques), when a system in specified 
in a dataflow language, the programmer 
is given the opportunity to explicitly 
create only the required sequencing.  
This increases the allowable flexibility 
of the compiler and eventual run time 
system to modify the program for 
efficiency reasons without affecting its’ 
correctness. 

The key to increasing 
concurrency in a dataflow language is 
the existence of a very large, 
inexpensive synchronization namespace, 
as described in [8].  They state “To 
obtain high performance on a 
[concurrent] machine lacking these 
features, a program must be partitioned 
into … processes that operate … on 
local data and rarely interact.”  This 
statement embodies the main reason for 
the pervasive interest in dataflow 
languages and systems: they represent an 
easily understood way to transfer the 
responsibility of the time/space tradeoff 
from the programmer to the run time 
system. 

This transfer significantly 
increases the complexity of the run time 
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system, as evidenced by the problems 
encountered by projects like Monsoon, 
the ETS and TTDA at MIT, and it 
remains a problem for more modern 
systems.  However as papers like [27] 
suggest, there exist simple yet very 
powerful compile time analysis 
techniques which should help to conquer 
these issues. 

There are two canonical 
examples of the dangers inherent in a 
potentially unbounded synchronization 
space.  Managing an excess of 
parallelism [28] exposed by dataflow 
architectures, and the difficulty of 
deciding congruence of concurrent 
systems as briefly outlined in [23]. 

The resource requirements 
problem inherent in dataflow 
architectures also resulted in problems in 
bounding storage requirements in the 
1980s.  This highlights the need for 
better formalisms to reason about 
concurrent dataflow systems.  ETS as 
described in [8], attempts to explicitly 
capture state requirements, a definite 
positive step, which is none the less 
ignored by most of the models in section 
5.0 Models.  In fact the original 
WaveScalar specification includes 
unbounded buffers between dataflow 
elements, a clear problem in past 
architectures. 

 
4.3 Concurrent Dataflow 

Dataflow languages are an ideal 
way to capture the exact “meaning” of a 
programming, especially with respect to 
concurrency and ordering requirements.  
The use of the simple dataflow firing 
rule, combined with a large 
synchronization namespace for tokens 
allows a programmer to specify the 
desired behavior in a very precise 
manner.  What’s more, dataflow 

architectures allow these specifications 
to be directly executed. 

However, problems such as 
bounded storage, practical 
implementation requirements, dynamic 
computation structures and under 
application of formal models have all 
hindered efforts in this direction. 

 
5.0 Models 

This section describes four 
possible formal models for reasoning 
about concurrency and dataflow.  None 
of them is perfect, each has serious 
flaws, and as such they have been 
chosen not only for their relative fame, 
but also for the interesting lessons to be 
learned. 

 
5.1 Process Networks 

Process networks [33] represent 
one of the purest dataflow formalisms, in 
no small part because of work like in 
[34], where Lee gives a denotational 
semantics for standard “Dennis 
Dataflow” which equates it with process 
networks. 

Process networks are 
characterized by a graph of statically 
connected dataflow operators which 
operate over lower order units of data. 

Significant work in this field by 
Lee and others [35], has made it 
particularly amenable to resource 
constrained digital signal processing and 
hardware applications. 

These areas are characterized by 
their hard real time constraints, static, 
numerically intensive computation 
structure and their need to handle infinite 
inputs. 

It is the last requirement, infinite 
I/O, which forces a break from 
traditional programming models founded 
on �-calculus, which is unusable in 
infinite I/O situations [34]. 
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5.2 Petri-Nets 

Petri-Nets [36] are perhaps the 
simplest model for concurrent and 
dataflow systems.  In addition to the fact 
that they are an easily understood 
graphical model, standard Petri-Nets 
have exactly one rule for execution, 
which represents a highly simplified 
version of the dataflow firing rule. 

Unfortunately with this simple 
one-rule version, Petri-Nets are not 
Turing complete.  However with the 
addition of inhibitor arcs, Petri-Nets are 
become “extended Petri-Nets” which are 
Turing complete.  This addition means 
that not only can Petri-Nets model both 
low and high level constructs, they are 
defined by exactly two rules. 

On of the simplest shortcoming 
of Petri-Nets is the lack of a uniform 
easily understood textual representation 
for them.  This somewhat limits their 
utility in formal analysis, as it is hard to 
write proofs with large graphics. 

However the more deeply rooted 
problem with first order Petri-Nets is the 
exponentially lower expressivity, which 
seriously retards their applicability to 
larger problems.  The fact of the matter 
is that even with techniques for 
managing partial nets, it remains very 
difficult to think about Petri-Nets.  Even 
the simplest examples can be 
prohibitively complicated to write and 
verify. 

 
5.3 �-Calculus 

�-Calculus is one of the widest 
known and best studied formalisms for 
modeling concurrent, and potentially 
non-deterministic computation.  It is 
based on the parallel composition and 
branching of sequential processes, which 
communicate channel names over 

channels.  A more complete introduction 
can be found in [23] or [37]. 

One key fault with process 
calculi in general is their encoding of 
time and state.  There is no reason in 
general to conflate the two issues, and 
many years of research have gone into 
separating the two in the form of out-of-
order execution (Tomasulo’s Algorithm 
[38], ROBs, etc).  Unfortunately �-
calculus, and many others implicitly 
model temporal and state progression 
with the same dotted prefix notation. 

As a side effect of this conflation 
of state and time �-calculus may require 
unbounded state, and the current state is 
not explicit in the text of the model.  
This is because state, for each process is 
modeled as an environment in the 
programming language sense: new 
channels are always added to it, never 
subtracted.  Of course, this makes it easy 
to write, but very hard to reason about, 
and effectively impossible to implement, 
never mind debug. 

Furthermore the “!” operator in � 
-calculus models exactly the kind of 
deadlock inducing behavior which any 
practical implementation must shun.  
While we must be able to model this, 
another construct, such as pull dataflow, 
would be better suited to practical use. 

 
5.4 Mobile Ambients 

Mobile Ambients [39], [40] are a 
formalism proposed by Luca Cardelli for 
modeling mobility and security.  As such 
they are very good for modeling ideal 
security situations. 

Mobile Ambients add location 
and motion on top of a �-Calculus like 
base, without conflating issues or adding 
syntactic sugar, and the inherent 
hierarchy is well suited to modeling the 
physical world.  However because of 
their heritage Mobile Ambients are bad 
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at representing state, the same as �-
Calculus.  Worse yet, they are quite 
unsuccessfully for modeling security, as 
perfect capability based systems are 
easily described, but security breaches 
and cryptographic cracking are ignored. 

Despite the drawbacks of Mobile 
Ambients, the idea that locality should 
be a first order concept at the model 
level is of key importance and the 
primary reason for their inclusion in this 
paper.  The fact is that models for 
dataflow and concurrency have often 
ignored the spatial dimension of the 
specification making it hard for a system 
or programmer to express a trade 
between space and time. 

 
5.5 Summary of Models 

Aside from the four formalisms 
presented in this section there are 
numerous others including guarded 
commands [41], CSP [42], CQP [43], 
CCS, the Actor Model [44], �-Calculus 
[21], Session Types [45] and 
Specification Diagrams [46], some of 
which complement the above four, but 
all of which aim to model concurrency. 

The goal of this section was to 
highlight two things: first there are a 
number of models for concurrent 
dataflow systems, and second, there are 
two basic flaws which can be introduced 
to a modeling formalism.  The 
fundamental modeling flaw is a models 
inability to capture undesirable 
occurrences so as to be able to prove that 
they do not arise.  The other flaw arises 
when a model captures some interesting 
feature of the system being modeled in 
an implicit way, making explicit 
reasoning difficult if not impossible. 

 
6.0 Languages 

This section discusses real world 
languages and systems, all of which are 

built on dataflow foundations, but none 
of which use the same terminology. 

One of the key points of this 
paper is a survey of the following 
languages. 

 
6.1 SQL 

SQL is widely used and widely 
known, making it a perfect example of a 
successful dataflow language, despite 
the fact that it isn’t always seen as one. 

The key reason SQL is amenable 
to dataflow execution and optimization 
techniques is its declarative nature.  SQL 
specifies what the answer should be, but 
gives surprisingly little information 
about how to compute it, representing an 
ideal tradeoff between programmer and 
run time responsibility. 

The process of transforming a 
declarative SQL query to a dataflow 
query plan is called “query 
optimization” [47] and has been around 
for 30 years, but even in this field new 
ideas like Eddies [48] promise 
interesting results. 

 
6.2 BlueSpec 

BlueSpec is a hardware 
description language which started as a 
research project at first MIT [49] then 
CMU, and has since been turned into a 
corporate product [50]. 

BlueSpec is based on the 
concepts presented by Dijkstra in [41].  
Commands are called “rules” and are 
grouped along functional lines, in an 
object oriented fashion.  The compiler 
automatically determines which rules 
(commands) can be run concurrently, 
thereby resolving Dijkstra’s choice 
operator at compile time. 

Of course there are no loops, 
forcing the programmer to manage loop 
parallelism and state explicitly.  Also, as 
this is a very practical language it 
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includes arbitration as syntactic sugar, 
allowing rules (commands) to have 
precedence. 

The final and largest difference 
between BlueSpec and the guarded 
command formalism is that BlueSpec, 
like most hardware description 
languages, lacks facilities for 
sequencing.  All rules are concurrent. 

 
6.3 P2, Overlog & Click 

The P2 project [13] began as a 
combination of work in distributed 
databases and P2P overlay networks.  As 
such is has led to a declarative logic 
programming language mixed with 
dataflow, and named “Overlog.”  
Overlog is an extension to Prolog with 
locations for logic rules.  Rules now 
represent the creation or arrival of a 
relational tuple. 

A more widely known system, 
with a less interesting language is The 
Click Modular Router [14].  While it is 
not really a router, it remains good 
example of a real world use of dataflow 
programming, and one of the first times 
the author of this paper has seen the 
explicit management of the dichotomy 
between push and pull dataflow. 

 
6.4 Liberty & RDL 

The Liberty project [51] at 
Princeton has applied standard 
programming language techniques to 
hardware design, including 
polymorphism, overloading and 
techniques from aspect oriented 
programming. 

RDL [31], a language being 
developed by the author of this paper, is 
very similar to Liberty and others, in that 
it aims to capture a specification of 
digital logic as a series of interconnected 
dataflow like operators.  RDL is part of 
the RAMP [52] project whose goal is to 

accelerate the development of multi-core 
architectures, operating systems and 
languages by providing a rapid 
simulation platform.  Thus concurrency, 
networking and hardware issues are all 
highly relevant to this work. 

 
7.0 Conclusion 

This paper contains: a survey of 
applications and frameworks for 
concurrent dataflow programming, a 
brief history of dataflow languages and 
architectures, and their relation to 
concurrency, and several formalisms and 
practical languages for reasoning about 
and expressing dataflow programs and 
architectures. 

This paper has outlined several 
problems and areas of open research for 
future work, as well as a number of 
existing projects in an effort to start 
closing the gap between the practical and 
theoretical work in this field. 

 
8.0 Future Work 

There remains significant future 
work in this field, including the 
development of better models for 
concurrent dataflow systems and their 
accompanying type systems.  Both 
session types [45] and scheduling [35] 
might shed some light on this area. 

The ideal end result would be the 
introduction of formal languages and 
models to real world applications at such 
a level as to allow subjects like dataflow 
programming and analysis and 
concurrency to be effectively taught at 
the undergraduate level, rather than 
remaining a “black art” as they are 
today. 
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